

Roll No.

--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 01

Total No. of Questions : 08

M.Tech. (EE) (2019 Batch) (Sem.-2)

DIGITAL PROTECTION OF POWER SYSTEM

Subject Code : MTEE-202-18

M.Code : 76101

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt any **FIVE** questions out of **EIGHT** questions.
2. Each question carries **TWELVE** marks.

1. What are the benefits that can be gained from digital protection relay? Explain the basic structure of digital protection relay.
2. a) Use the least square to fit a straight line for the points (2,2), (5,4), (6,6), (9,9) and (11,10) assuming that error in x and y are of same order of magnitude.
b) Let us assume that it is required to find the smoothed value for a measured three-point data set using linear equations. Let the measured data be denoted by, (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Explain the process to fit a linear equation.
3. What are the problems in protection of long and heavily loaded two or multi-terminal lines? Explain any current based differential protection scheme.
4. Derive the relationship between fourier and walsh coefficients.
5. With the help of diagram explain basic components of a digital protection scheme.
6. Give the mathematical formulation of first and second derivative method.
7. For A/D conversion for digital protection scheme explain Dual slope converter and parallel-comparator converter.
8. How fundamental and second harmonic components of transformer current can be extracted with finite - duration impulse response based filter?

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.